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Solution to Assignment 4

1. A trigonometric polynomial is p(cosx, sinx) where p(x, y) is a polynomial in two variables.
Its degree is the degree of p. For instance, let p(x, y) = x2y−6xy+3y−5 which is of degree
3, the corresponding trigonometric polynomial is cos2 x sinx − 6 cosx sinx + 3 sinx − 5 .
Show that every finite trigonometric series

a0
2

+
n∑
k=1

(ak cos kx+ bk sin kx)

can be expressed as a trigonometric polynomial of degree n and the converse is true.

Solution. Use Euler’s formula ekix = cos kx+ i sin kx, we see

(cosx+ i sinx)k = cos kx+ i sin kx.

By binomial expansion we have

k∑
j=0

C(k, j)ij cosk−j x sinj x = cos kx+ i sin kx ,

where C(k, j) are the binomial coefficients. By equalling the real and imaginary parts we
see cos kx and sin kx are trigonometric polynomials of degree k.

Conversely, using the substitution

cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i

in the trigonometric polynomial, we see that p(cosx, sinx) can be written as a linear
combination of eikx,−n ≤ k ≤ n. Thus it is a finite trigonometric series after we replace
eikx by cos kx+ i sin kx.

In conclusion, finite trigo series and trigo polynomials are the same thing.

2. Show that for two continuous, 2π-periodic functions f and g, they are identical if their
Fourier series are the same. Hint: Show that

∫ π
−π(f − g)(x)p(x)dx = 0 for all finite

trigonometric series.

Solution. This problem is the same as to prove, a continuous function vanishing
everywhere if its Fourier series is identically zero. We follow the hint. Since every finite
trigo series is a linear combination of cosnx and sinnx, the assumption implies∫

(f − g)p(x)dx = 0

for all finite trigo series. By Theorem 4.2, we can find a sequence of such functions {pn}
such that |f(x)− g(x)− pn(x)| < 1/n for all x. It follows that∫ π

−π
(f(x)− g(x))2dx =

∫ π

−π
(f(x)− g(x))(f(x)− g(x)− pn(x))dx+

∫ π

−π
(f(x)− g(x))pn(x)dx

=

∫ π

−π
(f(x)− g(x))(f(x)− g(x)− pn(x))dx .

Therefore,∫ π

−π
(f(x)− g(x))2dx ≤

∫ π

−π
|f(x)− g(x)||f(x)− g(x)− pn(x)|dx ≤M × 1

n
× 2π → 0 ,
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as n→∞. Here M is a bound on supx |f(x)− g(x)|. We conclude that∫ π

−π
(f − g)2dx = 0

which forces f − g ≡ 0 by continuity.

Note. For completeness, let us show that if
∫ b
a F (x)dx = 0 where F is a non-negative

continuous function, then F ≡ 0. For, if not, F (x0) > 0 at some x0. By continuity we
may assume x0 belongs to the interior of the interval. We can find a small δ > 0 such that
[x0 − δ, x0 + δ] ⊂ [a, b] such that F (x) ≥ F (x0)/2 > 0 on this subinterval. But then∫ b

a
F (x)dx =

∫ x0−δ

a
F (x)dx+

∫ x0+δ

x0−δ
F (x)dx+

∫ b

x0+δ
F (x)dx

≥
∫ x0+δ

x0−δ
F (x)dx

≤ F (x0)

2
× 2δ

= δF (x0) > 0 ,

contradiction holds. We apply this result to the previous paragraph by taking F = (f−g)2.

3. Find the first twenty data for the following sequences and count how many are in the
intervals I1 = [0, 0.25), I2 = [0.25, 0.75) and I3 = [0.5, 1) respectively in each case.

(a) 〈n
√

3〉 , (b) 〈pn
√

2〉 , (c)

〈
(1 +

√
5)

2

n
〉

.

Here pn is the n-th prime number (p1 = 2, p2 = 3, etc). What conclusion on their
distribution can you draw? Try more data if you don’t see the trend.

4. The Fibonacci numbers are given by the sequence {Un} satisfying Un+1 = Un+Un−1, U0 =
2, U1 = 1. Show that

Un =

(
1 +
√

5

2

)n
+

(
1−
√

5

2

)n
, n ≥ 0 .

Solution. By a standard induction. n = 2 clearly holds. Assume it holds for all k ≤ n.
We have

Un+1 = Un + Un−1 =

(
1 +
√

5

2

)n
+

(
1−
√

5

2

)n
+

(
1 +
√

5

2

)n−1

+

(
1−
√

5

2

)n−1

=

(
1 +
√

5

2

)n−1(
1 +

1 +
√

5

2

)
+

(
1−
√

5

2

)n−1(
1 +

1−
√

5

2

)

=

(
1 +
√

5

2

)n+1

+

(
1−
√

5

2

)n+1

,

done.
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5. Prove that the sequence {γn}, where γn is the fractional part of ((1 +
√

5)/2)n, n ≥ 1, is
not equidistributed in [0, 1).

Solution. From the previous problem we know that ((1+
√

5)/2)n ≡ −((1−
√

5)/2)n(mod 1).
But ((1−

√
5)/2)n = (−2/(1 +

√
5))n forms a sequence which is positive and negative al-

ternating and converging to 0, so the sequence it generates accumulates near 0 and 1
eventually.

6. (Optional) Show that for σ ∈ (0, 1), the sequence {< nσ >} is equidistributed in [0, 1).
Hint: Prove that

N∑
n=1

e2πikn
σ

= O(Nσ) +O(N1−σ)

by noting
N∑
n=1

e2πkin
σ −

∫ N

1
e2πikx

σ
dx = O

(
N∑
n=1

nσ−1

)
.

Solution. As e2πkn
σ

= cos(2πknσ) + i sin(2πknσ), we consider the real and imaginary
parts separately. On each [n, n + 1], by the mean-value property of the integral we have∫ n+1
n cos(2πnxσ)dx = cos(2πnyσ) for some y ∈ [n, n + 1]. Therefore, by applying the

mean-value theorem

cos(2πknσ)−
∫ n+1

n
cos(2πkxσ)dx = cos(2πknσ)−cos(2πkyσ) = −2πk sin(2πkcσ)σcσ−1(n−y)

for some mean value c lying between y and n. We have∣∣∣∣cos(2πknσ)−
∫ n+1

n
cos(2πkxσ)dx

∣∣∣∣ ≤ ∣∣(−2πk sin(2πkcσ))σcσ−1(n− y)
∣∣ ≤ Cnσ−1 .

Summing up, we have∣∣∣∣∣
N∑
n=1

cos(2πknσ)−
∫ N

1
cos(2πkxσ)dx

∣∣∣∣∣ ≤ C
N∑
n=1

nσ−1 .

Similarly we can treat the imaginary part.

Now, by the integral test,

N∑
n=1

nσ−1 ≥
∫ N+1

1
xσ−1dx = σ−1((N + 1)σ − 1) = O(Nσ),

and
N∑
n=2

nσ−1 ≤
∫ N+1

1
xσ−1dx = O(Nσ) .

It follows that
N∑
n=1

nσ−1 = O(Nσ) .

On the other hand,∫ N

1
cos(2πkxσ)dx = σ−1

∫ Nσ

1
y1/σ−1 cos(2πky)dy.
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We write∫ Nσ

1
y1/σ−1 cos(2πky)dy =

M∑
j=k

∫ (j+1)/k

j/k
y1/σ−1 cos(2πky)dy =

M∑
j=k

∫ 1/k

0

(
z +

j

k

)1/σ−1

cos(2πkz)dz ,

where M is the number so that (M + 1)/k is closest to Nσ. For each j,∫ 1/k

0

(
z +

j

k

)1/σ−1

cos(2πkz)dz =

(∫ 1/2k

0
+

∫ 1/k

1/2k

)(
z +

j

k

)1/σ−1

cos(2πkz)dz

=

∫ 1/2k

0

[(
z +

j

k

)1/σ−1

−
(
z +

j

k
+

1

2k

)1/σ−1
]

cos(2πkz)dz .

By the mean-value theorem,(
z +

j

k

)1/σ−1

−
(
z +

j

k
+

1

2k

)1/σ−1

=

(
1

σ
− 1

)(
z +

j

k
+ c

) 1
σ
−2 1

2k
, c ∈

(
0,

1

2k

)
.

Using this we see that ∫ 1/k

0

(
z +

j

k

)1/σ−1

cos(2πkz)dz

is like

C

∫ j/k

0

(
z +

j

k

) 1
σ
−2

dz .

Therefore,

∣∣∣∣∫ Nσ

1
y1/σ−1 cos(2πky)dy

∣∣∣∣ =

∣∣∣∣∣∣
M∑
j=k

∫ 1/k

0

(
z +

j

k

)1/σ−1

cos(2πkz)dz

∣∣∣∣∣∣
≤

∣∣∣∣∣∣C
M∑
j=k

∫ 1/k

0

(
z +

j

k

) 1
σ
−2

dz

∣∣∣∣∣∣
≤ C

∫ Nσ

1
y

1
σ
−2dy = CN1−σ .

We conclude that
N∑
n=1

e2πikn
σ

= O(Nσ) +O(N1−σ)

holds. Finally, the result comes from Weyl’s criterion as σ ∈ (0, 1).

I did not realize that the solution is too long. You may wish to skip it.


